E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae

نویسندگان

  • Wei Zhang
  • Clarence Hue Lok Yeung
  • Liwen Wu
  • Karen Wing Yee Yuen
چکیده

Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1's function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mms21 SUMO Ligase Activity Promotes Nucleolar Function in Saccharomyces cerevisiae

The budding yeast E3 SUMO ligase Mms21, also known as Nse2, is a component of the Smc5/6 complex, which regulates sister chromatid cohesion, DNA replication, and repair. Our study shows that the mms21RINGΔ mutant exhibits (1) reduced ribosomal RNA production; (2) nuclear accumulation of ribosomal proteins; (3) elevated Gcn4 translation, indicating translational stress; and (4) upregulation of G...

متن کامل

Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase.

Accurate genome segregation depends on cohesion mechanisms that link duplicated sister chromatids, thereby allowing their tension-dependent biorientation in metaphase. In Saccharomyces cerevisiae, cohesion is established during DNA replication when Eco1 acetylates the cohesin subunit Smc3. Cohesion establishment is restricted to S phase of the cell cycle, but the molecular basis of this regulat...

متن کامل

Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polα/Primase/Ctf4 Complex

Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypa...

متن کامل

Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae.

Sister chromatid cohesion refers to the process by which sister chromatids are tethered together until the metaphase-to-anaphase transition. The evolutionarily conserved cohesin complex mediates sister chromatid cohesion. Cohesin not only ensures proper chromosome segregation, but also promotes high-fidelity DNA repair and transcriptional regulation. Two subunits of cohesin (Smc1p, Smc3p) are m...

متن کامل

The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae.

Mutations in genes encoding the origin recognition complex (ORC) of Saccharomyces cerevisiae affect initiation of DNA replication and transcriptional repression at the silent mating-type loci. To explore the function of ORC in more detail, a screen for genetic interactions was undertaken using large-scale synthetic lethal analysis. Combination of orc2-1 and orc5-1 alleles with the complete set ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017